If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+22n=12
We move all terms to the left:
4n^2+22n-(12)=0
a = 4; b = 22; c = -12;
Δ = b2-4ac
Δ = 222-4·4·(-12)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-26}{2*4}=\frac{-48}{8} =-6 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+26}{2*4}=\frac{4}{8} =1/2 $
| 5.8m-3.8=1.2m+7.8 | | 2(t)=4t^2-3t+5 | | 28x+16x=180 | | -30+6k=-3(k-5) | | -5f=-2–6f | | -5/2h=4 | | 91=3x+2x | | 10r+1=(1+r)5 | | 28+24x=17x | | (3x/5)+x=2/3 | | -3x+25=-2 | | 2x=12+4x | | 3x/5+x=2/3 | | 8m+4m-4m+1=9 | | 3p–1–(p+3)=1 | | 97=-3(3+4a)+9 | | -3(p+2)^2=12 | | 7.85+q(=)-18.15 | | 7(3x+3)=147 | | 2x-4(x-2)=-9+3x-23 | | 12=q-5 | | 1x+29+1x+169=180 | | 5(3x-3)=150 | | 6y^2-25y+19=0 | | 2a-8=4(3a+1)-4 | | j-(-19j)-12j+-15j=-14 | | 2y-5=6y+19 | | 10x+17+5x=180 | | 11n-17n=12 | | 5x+3(4x-6)=84 | | 6v=10-v | | (x)=x^2-16 |